

Understanding and managing eutrophication in coastal lagoons

ERF 2003, Seattle Session SPS-12 Coastal Lagoons September 16th 2003

> S.B. Bricker J.G.Ferreira T. Simas A. Nobre A. Mason

NOAA – U.S.A. <u>http://www.noaa.gov</u> IMAR – Portugal <u>http://www.imar.pt</u>

Topics ASSETS/NEEA (approaches) Systems (key descriptors) Results (ASSETS/NEEA scores) Research models and ASSETS Conclusions

Ria Formosa: Ancão

Key aspects of the ASSETS/NEEA approach

- The NEEA approach may be divided into three parts: ✓ Division of estuaries into homogeneous areas
- Evaluation of data completeness and reliability
- Application of indices

Tidal freshwater (<0.5 psu)
Mixing zone (0.5-25 psu)
Seawater zone (>25 psu)

Spatial and temporal quality of datasets (completeness) Confidence in results (sampling and analytical reliability)

Overall Eutrophic Condition (OEC) index ----Overall Human Influence (OHI) index ---Determination of Future Outlook (DFO) index

----- State ----- Pressure ----- Response

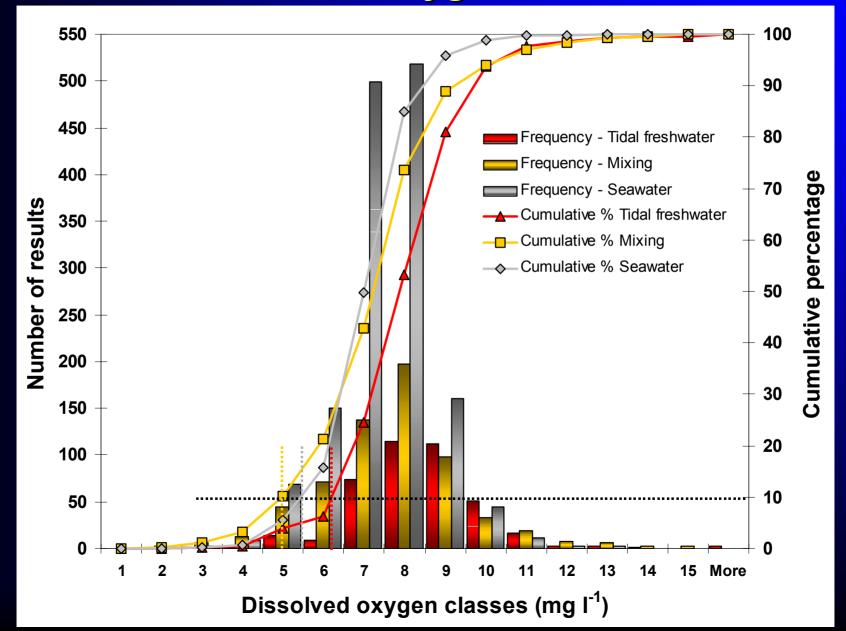
S.B. Bricker, J.G. Ferreira, T. Simas, 2003. An integrated methodology for assessment of estuarine trophic status. Ecological Modelling, In Press.

ASSETS extensions to the NEEA approach

Use of relational databases to assimilate dispersed data into an easily searchable data mining framework;

□ Use of simple models to determine pressure;

Use of GIS techniques to improve spatial weighting, and additional zonation if required;


Use of statistical criteria for some of the descriptors of state, such as chlorophyll *a* and dissolved oxygen;

Synthesis of results using a PSR approach

Complementing datasets using research models (tested for the Ria Formosa)

Use of seaweed biogeochemical and population models;
 Use of "local" models for O₂ in intertidal areas;

ASSETS calculation of secondary symptom dissolved oxygen scores

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AS	SET	S se	coring	syste	m for l	PSR
State (OEC) (DFO) Low Improve high Moderate low Improve low Moderate high No change Moderate high Worsen low High Worsen high Metric Combination matrix Class P 5 5 5 4 4 4 5 5 5 5 5 R 4 3 5 4 3	Grade		5	4	3	2	1
P 5 5 5 4 4 4 fs 5 5 5 5 5 fs 5 5 5 5 5 R 5 5 5 5 5 5 5 fs 5 5 5 5 5 fs 5 5 5 5 5 P 5 5 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3	<u>S</u> tate (OE) <u>R</u> esponse	C) Ĺ	OW	Moderate low	Moderate	Moderate high	High
P 5 5 5 4 4 4 (5%) S 5 4 3 5 4 3 (5%) R 5 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3 (19%) S 5 5 5 5 5 5 5 4 4 4 4 4 5 5 5 4 4 4 1 5 5 5 4 4 4 1 5 5 5 4 4 4 1 5 5 5 4 4 4 1 5 5 5 4 4 4 1 5 5 5 4 4 4 1 5 5 5 4 4 4 1 5 5 5 4 4 4 1 5 5 5 4 4 4 1 2 1 5 4 3 2 1 2 1 2 1 5 4 3 5 4 3 5 4 3 3 4 1 4 1 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1	Metric			Combinatic	on matrix		Class
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S			5555	5 5		
P 5555544444443333333222222222222211 333334433333554433344444333233 215432154321212154354321543554 (32%) P 444443333333222222211111 2222233222223322222332222233222 54321215432121432132154 Poor (24%) P 3333322222233222233222233322 54321215432121432132154 Bad (19%)	S		554	4444554	4 4 5 5 5 4 4	4	
P 444433333322222211111 (24%) S 22222332222233222233222 R 54321215432121432132154 Bad P 333322222211111111 (19%)	S	33333	3 4 4 3 3	3335544	3 3 3 4 4 4 4	4 3 3 3 2 3 3	
P 33332222211111111 (19%)	S	2	2222	3 3 2 2 2 2 2 3	3 3 2 2 2 2 3 3	3 3 2 2	
P 543215432132154321			111	1111111	2221111	1	

Key descriptors for the four lagoon systems

	MD inland bays	Chincoteague bay	Ria de Aveiro	Ria Formosa
<u>Pressure</u>				
Population (X 10 ³)	19-171	12-108	250-300	124-211
Nutrient loading (tN y ⁻¹)	550	913	2760	1028
<u>State</u>				
Volume (X 10 ⁶ m ³)	56	267	84	92
Mean depth (m)	1.1	1.2	1.4	1.9
Mean tidal range (m)	0.7	0.5	2	2
Water temperature (°C)	2.0-32	-1-33	10.5-24.5 ^{*1}	14.0-23.8 ^{*1}
Salinity	28	29	0.7-35.5 ^{*1}	34.9-37.0 ^{*1}
Water residence	253	183	4	0.5-2
time (days)				
<u>Impact</u>				
Main impact	Chlorophyll <i>a</i>	HABs	SAV loss	Macroalgae
Factors	HABs Macroalgae	Macroalgae	Red tides	Intertidal O ₂ Bivalve mortality

*1: 5th – 95th percentile

MD Inland Bays - NEEA/ASSETS Application

Indices	Methods	Parameters	Value	Level of expression	Index
Overall Human	Succeptibility	Dilution potential	Low	High	MODERATE
Influence (OHI)	Susceptibility	Flushing potential	Low	susceptibility	HIGH
ASSETS: 2	Nutrient inputs	Modera	ate nutrient	input	
		Chlorophyll a	1.0	High	
Overall	PSM ^{*1}	Epiphytes	No Data		
Eutrophic		Macroalgae	1.0	High	
Condition (OEC)		Dissolved Oxygen	0.50	Moderate	HIGH
ASSETS: 1	SSM*2	Submerged Aquatic Vegetation	(SAV has	increased)	
		Nuisance and Toxic Blooms	1.0	High	
Determination of Future Outlook (DFO)	Future nutrient	Future nutrie	ent pressure	es decrease	IMPROVE LOW
ASSETS: 4	pressures				
 ¹ – Primary sympto method ² – Secondary sym method 	ptoms $\sum_{i=1}^{n} \left(\frac{A_z}{A_t} \right)$	= of	/mptom lev expressior llue for estu	n Az – Area of a	zone

Chincoteague Bay - NEEA/ASSETS Application

Indices	Methods	Parameters	Value	Level of expression	Index
Overall Human Influence (OHI)		Dilution potential	Moderate	High	
	Susceptibility	Flushing potential	Low	susceptibility	MODERATE
ASSETS: 3	Nutrient inputs	Lov	v nutrient ir	nput	
		Chlorophyll a	1.0	High	
Overall	PSM ^{*1}	Epiphytes	No Data		
Eutrophic		Macroalgae	1.0	High	
Condition (OEC)		Dissolved Oxygen	0	No problem	HIGH
ASSETS: 1	SSM*2	Submerged Aquatic Vegetation	(SAV has	s increased)	
		Nuisance and Toxic Blooms	1.0	High	
Determination of Future Outlook (DFO)	Future nutrient pressures	Future nutri	ent pressur	res decrease	IMPROVE LOW
ASSETS: 4	pressures				
 ¹ – Primary sympto method ² – Secondary sym method 	ptoms $\sum_{i=1}^{n} \left(\frac{A_z}{A_t} \right)$		ymptom lev f expressio alue for est	n Az – Area of z	

ASSETS: BAD

Ria de Aveiro - NEEA/ASSETS Application

ASSETS: MOD

Indices	Methods	Parameters	Value	Level of expression	Index
Overall Human Influence (OHI)		Dilution potential	High	Low susceptibility	MODEDATE
	Susceptibility	Flushing potential	Moderate		MODERATE LOW
ASSETS: 4	Nutrient inputs	Hig	h nutrient i	nput	
		Chlorophyll a	1	0.33	
Overall	PSM ^{*1}	Epiphytes	0	Moderate	
Eutrophic		Macroalgae	0	Wouerate	
Condition (OEC)		Dissolved Oxygen	0		MODERATE
ASSETS: 3	SSM*2	Submerged Aquatic Vegetation	0.5	0.5 Moderate	
		Nuisance and Toxic Blooms	0		
Determination of Future Outlook (DFO) ASSETS: 3	Future nutrient pressures	Future nutri	ent pressur	es decrease	NO CHANGE
 *1 – Primary sympto method *2 Secondary symp 	$\sum_{n=1}^{n} \left \frac{A_z}{Z} \right $		ymptom lev f expressio		nber of zones zone

value for estuary At – Total estuary area

*² – Secondary symptoms $\angle_{i=1} (A_t)$ value method

Ria Formosa – NEEA/ASSETS Application

method

Indices	Methods	Parameters	Value	Level of expression	Index
Overall Human		Dilution potential	High	Moderate	MODERATE
Influence (OHI)	Susceptibility	Flushing potential	Low	susceptibility	WODERATE
ASSETS: 3	Nutrient inputs	Modera	te nutrien	nt input	
		Chlorophyll a	0.25	0.57	
Overall	PSM ^{*1}	Epiphytes	0.50	Moderate	
Eutrophic		Macroalgae	0.96		
Condition (OEC)		Dissolved Oxygen	0		MODERATE LOW
ASSETS: 4	SSM*2	Submerged Aquatic Vegetation	0.25	0.25 Low	LOW
		Nuisance and Toxic Blooms	0		
Determination of Future Outlook (DFO) ASSETS: 4	Future nutrient pressures	Future nutrie	nt pressu	res decrease	IMPROVE LOW
 ^{*1} – Primary sympto method ^{*2} – Secondary sym method 	pms $\sum_{i=1}^{n} \left(\frac{A_z}{A_t} \right)$	$\begin{pmatrix} Expression \\ value \end{pmatrix} = \mathbf{Sy} \\ s$	mptom le expressio ue for est	vel n – Total nur on Az – Area of tuary At – Total es	

ASSETS: GOOD

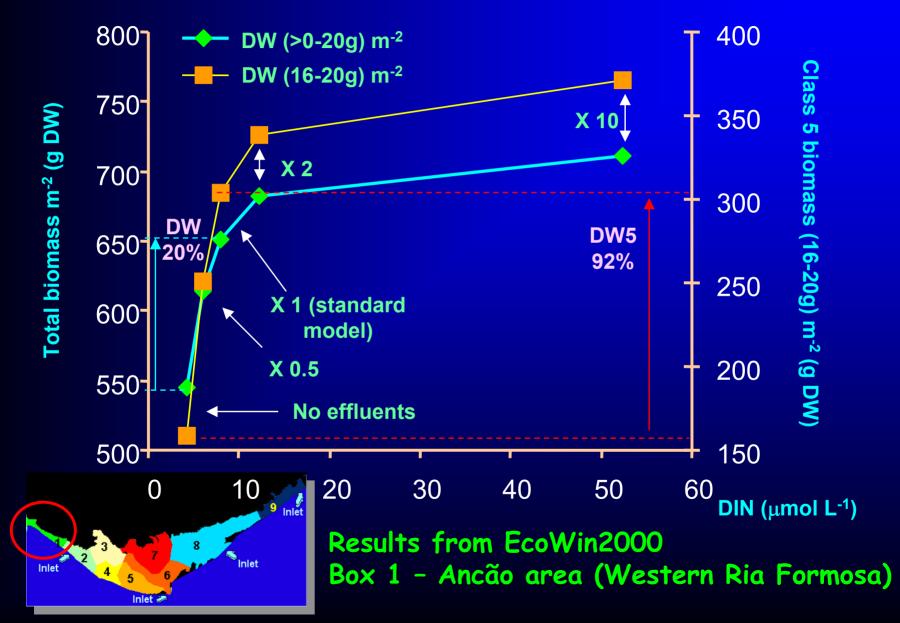
Application of research models to the ASSETS approach

Divide the system into the zones defined by the research ecological model boxes

□ Use of statistical criteria for some of the descriptors of state, such as chlorophyll *a* and dissolved oxygen

□ A - Determine primary and secondary symptom scores for each box based on a database;

B - Determine primary and secondary symptom scores for each box based on the results of the research model for relevant parameters;


□ C - Determine primary and secondary symptom scores for the ferent research model pressure scenarios;

Determine the pressure metric in ASSETS for A, B and C

Calculate an overall ASSETS index based on

PSR for different management scenarios

Growth of Ulva sp. in the Ria Formosa Percentile 90 values for different DIN loads

Ria Formosa – ASSETS validation & model scenarios

Index	Methods	Parameters	Value	Level of expression	Index
Overall Eutrophic Condition (OEC)	PSM Field data	Chlorophyll a Epiphytes Macroalgae	0.25 0.50 0.96	0.57 Moderate	MODERATE
ASSETS OEC: 4	SSM	Dissolved Oxygen Submerged Aquatic Vegetation Nuisance and Toxic Blooms	0 0.25 0	0.25 Low	LOW
Overall Eutrophic Condition (OEC)	PSM Research	Chlorophyll a Epiphytes Macroalgae	0.25 <i>0.50</i> 1.00	0.58 Moderate	
ASSETS OEC: 4	model SSM	Dissolved Oxygen Submerged Aquatic Vegetation Nuisance and Toxic Blooms	0 0.25 0 28	0.25 Low	MODERATE LOW
Overall Eutrophic Condition (OEC)	PSM Model green	Chlorophyll <i>a</i> <i>Epiphytes</i> Macroalgae	0.25 <i>0.50</i> 0.50	0.42 Moderate	MODERATE
ASSETS OEC: 4(5		Dissolved Oxygen Submerged Aquatic Vegetation Nuisance and Toxic Blooms	0 0.25 0	0.25 Low	LOW

- ASSETS develops the NEEA approach into a PSR framework, and allows an overall combined score to be calculated
- Detailed ecological models may be used to provide complementary data, or to fill data gaps
- Four shallow water systems were classified using this methodology. The results differ significantly, depending on pressures, susceptibility or other factors.
- Research models may assist in highlighting particular effects of eutrophication (e.g. nocturnal anoxia in intertidal areas, under specific tidal conditions)
- Research models used to explore changes in state (impacts) due to various pressure scenarios provide detailed outputs appropriate for scientific analysis.
- These outputs may be synthesized using screening models such as ASSETS, which are much more tractable to environmental managers.